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Summary. This chapter discusses quantum antiferromagnets which do not break
any symmetries at zero temperature � also called �spin liquids� � and focuses on
lattice spin models with Heisenberg-like (i.e. SU(2)-symmetric) interactions in di-
mensions larger than one. We begin by discussing the Lieb-Schultz-Mattis theorem
and its recent extension toD > 1 by Hastings (2004), which establishes an important
distinction between spin liquids with an integer and with a half-integer spin per unit
cell. Spin liquids of the �rst kind, �band insulators�, can often be understood by ele-
mentary means, whereas the latter, �Mott insulators�, are more complex (featuring
�topological order�) and support spin-1/2 excitations (spinons). The fermionic for-
malism (A�eck and Marston, 1988) is described and the e�ect of �uctuations about
mean-�eld solutions, such as the possible creation of instabilities, is discussed in a
qualitative way. In particular, we explain the emergence of gauge modes and their
relation to fractionalization. The concept of the projective symmetry group (X.-G.
Wen, 2002) is introduced, with the aid of some examples. Finally, we present the
phenomenology of (gapped) short-ranged resonating-valence-bond spin liquids, and
make contact with the fermionic approach by discussing their description in terms
of a �uctuating Z2 gauge �eld. Some recent references are given to other types of
spin liquid, including gapless ones.

1 Introduction

The concept of �spin liquid� is due to P. W. Anderson, who observed in
1973 [1] that magnetically long-range-ordered (Néel) states were in principle
not the only possible ground states for two-dimensional (2D) quantum (and
frustrated) antiferromagnets. He explained that such systems could avoid all
spontaneous symmetry-breaking, and thus remain �disordered� down to T = 0.
The picture he provided for such states is the celebrated (short-range) �res-
onating valence-bond� (RVB) wave function, which is the linear and coherent
superposition of a large number of short-range singlet coverings of the lattice.
Since then, although our understanding of frustrated quantum spin systems
has improved greatly, in general it remains quite incomplete.



2 G. Misguich

First it is necessary to de�ne precisely what is meant by the term �quantum
spin liquid�. Depending on the context (experiment, theory, simulation, . . .),
these words are often applied with rather di�erent meanings. In Sec. 2 we will
discuss three possible de�nitions used frequently (and often implicitly) in the
literature, and will comment on their implications. The third de�nition is the
most restrictive, having probably no �overlap� with the more �common� states
of matter in D > 1 magnetic systems. This is the de�nition we adopt in the
remainder of this chapter. It requires the existence of fractional excitations,
i.e. quasiparticles with quantum numbers (usually the total spin) which are
fractions of the elementary local degrees of freedom. In spin models, this is
essentially equivalent to the existence of spin- 12 excitations (known as spinons).
However, such excitations are not easy to realize, because in a system where
the local degrees of freedom are spin-�ipping proceses which change Sz

tot by
±1, any excitation created in a �nite region of the system can only have an
integer spin. In a one-dimensional system (such as a spin chain), it is well
known that domain-wall excitations (or kinks) can carry a half-odd-integer
spin. This situation is, however, rather di�erent in D > 1, where only some
particular states of matter may sustain fractional excitations. We explain, at
a qualitative level, in Sec. 2.3 how these fractional excitations interact with
each other through emerging gauge �elds, and that such spin liquids sustain
a kind of hidden order, called �topological order�, a concept due to X.-G. Wen
[2, 3, 4, 5] which is connected at a profound level to that of fractionalization.

Why is it that spin liquids should be �fractional� ? To answer, we will
review in Sec. 2.4 the Lieb-Schultz-Mattis theorem [6] and its extension by
Hastings [7, 8] to D > 1. Under certain physically reasonable assumptions, we
will argue that this theorem implies essentially (if not mathematically) that
a spin- 12 system with an odd number of sites per unit cell (a genuine Mott
insulator) and conserved total magnetization Sz

tot must either i) be ordered
in a conventional way, meaning with a spontaneously broken symmetry, or
ii) have some type of topological order.1 Because topological order is con-
nected intimately to the existence of fractional excitations, we conclude that
a Mott insulator with conserved Sz

tot and no spontaneous symmetry-breaking
supports topological order and fractional excitations.

In Sec. 3 we discuss fractionalized spin liquids in a more rigorous frame-
work, by introducing the basics of the slave-particle formalism and by explain-
ing (Sec. 3.4) how gauge �elds arise when investigating the �uctuations around
mean-�eld states. Section 4 describes phenomenologically the properties of the
simplest gapped spin liquids, called Z2 liquids in modern terminology, which
correspond essentially to short-range RVB states. Their excitations, spinons
and visons, are discussed, and a number of realizations in frustrated 2D spin
models are reviewed. Section 5 is devoted to gapless liquids in D > 1, also
known as algebraic spin liquids. These states are more complex than the sim-

1A third possibility for D > 1 is that the system has been �ne-tuned to a critical
point, but this does not correspond to a stable phase.
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ple Z2 liquids, and we present an overview of their study using the mean-�eld
approximations discussed in Sec. 3. These liquids are closely related to the
long-range RVB theories of high-temperature superconductors [9, 10, 11, 12]).
Sec. 6 mentions brie�y some of the spin liquids which are not discussed else-
where in this chapter.

2 What is a spin liquid ?

We focus on the zero-temperature properties of lattice quantum spin models
with global U(1) (conservation of Sz

tot) or SU(2) symmetry (total spin S2
tot =

S(S + 1) conservation).

2.1 Absence of magnetic long-range order (de�nition 1)

De�nition 1: a quantum spin liquid is a state in which the spin-spin correla-

tions, 〈Sα
i S

β
j 〉, decay to zero at large distances |ri − rj | → ∞.

This de�nition is very simple, but it su�ers from several limitations. First, any
system with continuous spin-rotation symmetry inD ≤ 2 at �nite temperature
would satisfy this de�nition (Mermin-Wagner theorem), even if it is classical
and/or ordered at T = 0. Secondly, a spin nematic [13] would satisfy this
de�nition, despite the fact that it breaks spin rotation symmetry and has some
long-range order in the four-spin correlations (see Refs. [14, 15, 16] for recent
numerical studies of quantum spin nematics). The de�nition could be made
more strict by requiring the global spin-rotation symmetry to be unbroken.
In this case, the spin nematics would be excluded. However, a valence-bond
crystal2 (VBC, see Ref. [17]) would satisfy this de�nition, although it possesses
certain features of conventional crystalline order.

2.2 Absence of spontaneously broken symmetry (de�nition 2)

De�nition 2: a quantum spin liquid is a state without any spontaneously broken

symmetry.
Such a de�nition excludes the VBC state discussed above, but still has some
unsatisfactory features. Consider a spin- 12 model where the lattice is composed
of clusters with an even number of spins (for example 2 or 4). Inside each clus-
ter, the exchange interactions J are strong and antiferromagnetic. By contrast,

2 In a VBC, the spins group themselves spontaneously into small clusters (with an
even number of sites) which are arranged spatially in a regular pattern. In the crudest
approximation, the wave function would be simply a tensor product of singlet states
(one for each cluster). Because a VBC wave function is a spin singlet (rotationally
invariant) and has short-ranged spin-spin correlations, it is a spin liquid according
to de�nition 1. However, it also possesses some order in the four-spin correlation
functions and breaks some of the lattice symmetries.
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the inter-cluster interactions J ′ are weak.3 A two-chain spin ladder, in which
the rungs form 2-site clusters, realizes this type of geometry. Such models can
be understood qualitatively by a perturbation theory around the decoupled
limit J ′/J → 0. The (unique) ground state is a total-spin singlet (reasonably
well approximated by a tensor product of singlets on each cluster) with gapped
excitations and no broken symmetry. This state obeys de�nition 2. However,
these systems do not realize new states of matter. These systems undergo a
smooth evolution from the T = 0 limit (singlet ground state) to the T = ∞
limit (free spins), with a characteristic crossover temperature determined by
the spin gap. From this point of view, this state would more appropriately be
called a �T = 0 paramagnet� or a �band insulator� rather than a spin liquid.
To our knowledge, almost all gapped Heisenberg spin systems in D > 1 which
have been observed experimentally belong in this category. These systems are
quite similar to valence-bond solids, with the spin-1 Haldane chain or AKLT
models [18] as standard examples.

2.3 Fractional excitations (de�nition 3)

De�nition 3: a quantum spin liquid is a state with fractional excitations.

In the present context, these fractional excitations are usually �spinons�, car-
rying a half-odd-integer spin (normally 1

2 ).

What is a fractional excitation ?

Operations involving any �nite number of S+
i and S−j operators may only

change the total magnetization Sz
tot by an integer (in units where ~ = 1). Thus

the creation of a spin-12 excitation (one �half� of a spin-�ip) requires acting
in a non-local way on the system. Strictly speaking, such a process is possible
only in an in�nite system. As a simple example, let us consider the spin- 12
Heisenberg chain with �rst- and second-neighbor couplings, respectively J1

and J2. For J1 = 2J2 > 0 (the Majumdar-Ghosh point [19]), the (two-fold
degenerate) ground states are given exactly as

|a〉 = · · · ⊗ |[01]〉 ⊗ |[23]〉 ⊗ |[45]〉 ⊗ · · · , (1)

|b〉 = · · · ⊗ |[12]〉 ⊗ |[34]〉 ⊗ |[56]〉 ⊗ · · · , (2)

where |[ij]〉 = | ↑i↓j〉 − | ↓i↑j〉 is a spin singlet state for sites i and j. This
is an example of a VBC with spontaneous translational symmetry-breaking.
Now we insert in |a〉 an �up� spin on site 2 by a non-local operation consisting
of a shift of the rest of the con�guration by one lattice constant to the right,

· · · ⊗ |[01]〉 ⊗ | ↑2〉 ⊗ |[34]〉 ⊗ |[56]〉 ⊗ · · · (3)

3Here �weak� does not imply necessarily that the coupling is numerically small,
but that the system can be understood qualitatively from a weak-coupling limit.
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This state has Sz
tot = 1

2 and contains a domain wall between two regions (of
types �a� and �b�). It is not an exact eigenstate of the Hamiltonian, and is
clearly a �nite-energy excitation. From a variational point of view, it proves
the existence of �nite-energy spin- 12 excitations in the thermodynamic limit.

In a chain of �nite length, one may act locally with S+
2 on |a〉. The resulting

state,
· · · ⊗ |[01]〉 ⊗ | ↑2〉 ⊗ | ↑3〉 ⊗ |[45]〉 ⊗ · · · , (4)

can be viewed as two spinons, with parallel spins, on sites 2 and 3. The spin
�ip has created a pair of spinons which may then propagate to large distances
as two independent and elementary excitations.

Another very simple example of fractionalization in a 1D spin chain is the
XY chain, which can be mapped exactly onto free, gapless, fermionic spinons
by the Jordan-Wigner transformation [20]. Fractionalized (but interacting)
spinons are also present in the spin- 12 Heisenberg chain, and spin-charge sep-
aration is a general phenomenon in Tomonaga-Luttinger liquids. These ex-
amples illustrate that fractionalization is a rather common phenomenon in
one dimension. However, ordered states do not in general support fractional
excitations in D > 1. As an example, any attempt to �separate� two spinons
in a D > 1 VBC will not lead to a two-spinon state when the entities are far
apart. At su�ciently large distances, this results instead in two excitations
with integer spins (see Fig. 2 in C. Lhuillier's chapter). We will show that the
mechanisms leading to fractionalization in D > 1 are very di�erent from the
�domain wall�, �soliton�, or �kink� picture valid in 1D.

In 2D, the most famous example of fractionalized systems is provided by
fractional quantum Hall �uids. Here the elementary excitations carry an elec-
tric charge which is a fraction (for example 1

3 ) of that of the electron. As above,
local excitations may only have an integer charge. However, if an electron is
added to a ν = 1

3 quantum Hall �uid, it will decay into three elementary
quasiparticles of charge + e

3 . The property that the system is fractional means
that these quasiparticles can be placed far apart from each other with a �nite

energy cost. In the same way, a spin �ip (changing Sz
tot from 0 to 1, as induced

by a neutron scattering process) in the Majumdar-Ghosh chain would decay
into two spinons, each carrying half a quantum of magnetization. There may
(or may not) be some short-distance bound states between spinons, but the
fact that the system is fractionalized means that one can separate two spin- 12
excitations to in�nite distances with only a �nite energy cost. The spinons
are then said to be decon�oned. Spinons have the same spin as electrons, but
do not carry an electric charge. In this sense, a spinon is a �fraction� of an
electron.4 Removing an electron from a Mott insulator is equivalent to cre-
ating a charged hole and removing a spinon (spin). Magnets with decon�ned
spinons are thus closely related to the problem of spin-charge separation in
doped Mott insulators. This said, it is not obvious how to describe e�ective

4There is, however, no charge fractionalization, as in the quantum Hall e�ect.
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long-range spinon-spinon interactions in a model where the microscopic inter-
actions are purely local. We will explain � at a rather qualitative level � that
gauge theories provide a framework to deal with the question of decon�ne-
ment.

What is the connection between gauge theories and fractional spin
liquids ?

To describe a quantum system with decon�ned spinons, it is logical to seek
a formalism including single-spinon creation and annihilation operators. On
general grounds, such a formalism necessarily involves some gauge �elds. A
spinon creation operator changes the magnetization by ± 1

2 , and thus cannot
be written locally in terms of the spin operators Si. The usual choice is to
decompose the spin operators into two spinon operators,

S+
i = c†i↑ci↓ , 2Sz

i = c†i↑ci↑ − c†i↓ci↓, (5)

and to impose the constraint of one particle per site for all states in the
physical Hilbert space,

c†i↑ci↑ + c†i↓ci↓ = 1 ∀ i. (6)

In this review, we focus on the fermionic5 representation, {c†iσ, cjσ′} = δijδσσ′ .

Acting with a single c†i↑ operator transforms a physical state into a non-
physical one which violates the constraint above. To deal with this, physically
it is clear that when inserting a spinon one must �shift� the spin state along
some path on the lattice, ending at a point where another spinon is created
or destroyed.6 Thus c†i↑ must �dressed� with a �string� containing the path
information. This will be the role of the gauge �eld.

Spin operators, and all physical states satisfying Eq. (6), are invariant
under

c†iσ −→ e−iΛic†iσ, , σ =↑, ↓, , Λi ∈ [0, 2π[. (7)

In fact, invariance under this gauge transformation and Eq. (6) are equiv-

alent.7 That c†i↑ transforms a physical state into a non-physical one arises

5To this point, the �bare� spinon operators can be chosen to be fermionic or
bosonic. The actual statistics of the physical excitations should not depend on this
arbitrary choice, which suggests that the fractionalized excitations are not always
simply related to the bare creation operators introduced in Eq. (5).

6In a spin chain, there are only two ways to do this, to the right or to the left,
but in D > 1, many paths are possible.

7The transformation of Eq. (7) can be implemented by the operator Û(Λ) =
exp(i

P
i,σ=↑,↓ Λic

†
iσciσ). When applied on a state |ψ〉 satisfying Eq. (6), this opera-

tion gives only a global phase, Û(Λ)|ψ〉 = exp(i
P

i Λi)|ψ〉. It is then convenient to

rede�ne Û by Û(Λ) = exp(i
P

i Λi(c
†
i↑ci↑ + c†i↓ci↓ − 1)). Thus any state |ψ〉 obeying

Û(Λ)|ψ〉 = |ψ〉 (gauge invariance, for any Λ), must satisfy (c†i↑ci↑+c
†
i↓ci↓−1)|ψ〉 = 0

for any site i, which is precisely Eq. (6).
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because it is not a gauge-invariant operator. The standard solution for this
is to introduce8 a gauge-�eld operator Aij on each bond of the lattice, which
transforms according to Aij → Aij + Λi − Λj , so that

c†0↑ exp
(
iA01 + iA12 + iA13 + · · ·+ iA(n−1)

)
cn↑ (8)

is gauge-invariant. To understand the physical the meaning of this gauge �eld,
from the discussion of spinons in valence-bond states one may anticipate that
exp

(
iA01 + · · ·+ iA(n−1)n

)
performs the �shift� operation required to insert

or destroy a spinon at each end of the path connecting site 0 to site n.
At this stage, the gauge-�eld operators Aij do not appear explicitly in the

spin Hamiltonian [the Heisenberg model can be written using Eq. (5)]. Thus
the transformations above do not yet deliver a gauge theory with a dynamical

gauge �eld.9 However, for many purposes it is important only to derive an
e�ective low-energy theory for the spinons, which is obtained by integrating
over some high-energy degrees of freedom (such as gapped �uctuation modes).
Such a procedure generally produces all of the local terms which are allowed
by symmetry. The simplest terms involving the gauge �eld, and which are
invariant under Eq. (7), are those of Maxwell type (i.e. analogs of the terms
for magnetic and electric energy). The precise nature of the gauge �eld and its
interaction terms depends on details of the spin model, and is (unfortunately)
very di�cult to predict from microscopic calculations. In some systems, the
relevant gauge �eld will take angular values (∈ [0, 2π[, known as a U(1) gauge
�eld) and in some other cases it is restricted to 0 or π (known as Z2). We refer
the reader to Sec. 3 for more details, and to the review of Lee, Nagaosa and
Wen [21] for a complete discussion.

From the example of electrodynamics, we know that gauge �elds can me-
diate long-range interactions between electric charges (although the Hamilto-
nian is local). In the present context, the elementary �charges� are the spinons.
Generally speaking, a gauge theory can have two kinds of phase: con�ned
phases where excitations with non-zero charge cannot be spatially isolated
from each other, and decon�ned phases where isolated non-zero charges are
�nite-energy excitations. Con�nement occurs when the �ux B (de�ned as the
circulation of Aij) piercing the plaquettes of the lattice �uctuates strongly. In
this case, the description of the spin system in terms of spinons interacting
with a gauge �eld is formally correct but not of practical utility, because the
gauge �eld generates an e�ective, long-range attraction (with a linear poten-
tial) between spinons, they are con�ned in gauge-neutral pairs (with an integer
spin, like a magnon), and cannot be elementary excitations of the system.

The situation is qualitatively di�erent if the gauge �eld is in a decon�ned
phase, which is realized when the �ux �uctuations are small. In this case,

8A more formal construction is presented in Sec. 3.2.
9By comparison with the Maxwell term in electromagnetism, 1

e2F
µνFµν , the

Heisenberg model corresponds formally to in�nite coupling, e = ∞, which is a non-
trivial limit because the gauge-�eld �uctuations cost no energy and are therefore
large.
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the spinons (possibly �dressed� by interactions) are �nite-energy states of the
model, whose ground state is a fractionalized spin liquid.10 Thus the existence
of fractionalized spin liquids may be formulated as a problem of con�nement
or decon�nement in certain types of lattice gauge theory coupled to spinons
(we refer the reader again to Sec. 5 for details).

Topological order

For a conventional type of order associated with a discrete, spontaneous
symmetry-breaking (as is the case for a VBC), several ground states |1〉, |2〉,
· · ·, |d〉 are degenerate in the thermodynamic limit. One may look for two

(normalized) linear combinations |a〉 =
∑d

i=1 ai|i〉 and b〉 =
∑

i bi|i〉 of the
degenerate ground states, and for a local observable Ô (acting on a �nite
number of sites) which acts to distinguish them, 〈a|Ô|a〉 6= 〈b|Ô|b〉. If such
states |a〉, b〉 and such an operator Ô do exist (in the thermodynamic limit),
Ô is (by de�nition [22]) an order parameter for the broken symmetry.

If the topology of the lattice is non-trivial, as for a cylinder or torus, a
gapped, fractionalized spin liquid will also exhibit a ground-state degeneracy,
even in the absence of any broken symmetry. The crucial di�erence with con-
ventional forms of order is that no local observable, Ô, can distinguish the
ground states in the thermodynamic limit (in D > 1). The ground-state de-
generacy is suggestive of some form of order, but without an associated local
order parameter. This type of non-local order has been named �topological
order� in the pioneering works of X.-G. Wen [2, 3, 4]. This type of degeneracy
is a consequence of fractionalization. The sequence of arguments is not math-
ematically rigorous, but rather simple and (hopefully) intuitive. We refer to
Ref. [23] for a more precise discussion.

Consider a spin model with decon�ned spinons as elementary excitations
and periodic boundary conditions in one direction (taken to be x). Starting
in a ground state |1〉, we i) create locally a pair of spinons, ii) move one of
them around the cylinder, iii) annihilate this spinon with its partner, and iv)
denote by |2〉 the resulting �nal state. Let us further de�ne T̂ as the unitary
operator describing this process, |2〉 = T̂ |1〉. If the spectrum remains gapped
during the (adiabatically slow) moving process, T̂ brings the system back to
a ground state, which may however not be the same as the inital ground
state. At each intermediate time step, the system contains two spinons. Such
an intermediate state may be viewed as being obtained from a spinon-free
state by applying some combination of �string� operators which connect the

10Con�nement should not be confused with the existence of bound states. As an
example, protons and electrons have bound states, those of the hydrogen atom,
but they are not con�ned by the electromagnetic gauge �eld: because they can
be separated to in�nite distance by only a �nite input energy, they exist as isolated
particles. The situation is di�erent for quarks, which are con�ned by the QCD gauge
�eld and cannot be observed as isolated particles at any energy.
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two spinons, as in Eq. (8). In other words, even when they are far apart,
the spinons remain �connected� by a gauge-�eld string. When the two spinons
meet again and annihilate, there remains a non-contractible gauge-�eld �loop�
winding around the cylinder. Intuitively, this is why the new ground state, |2〉,
is generally di�erent from |1〉. To make this schematic argument somewhat
more precise, one introduces a second adiabatic process, in which a �twist�
φ ∈ [0, 2π] is applied gradually to the system [24, 23]. This twist amounts to a
modi�cation of the boundary conditions for S+

i (and S−i ): S
+
x+Lx,y ≡ S+

x,ye
iφ.

Up to a unitary transformation U , the spectrum at φ = 0 is identical to that at
φ = 2π: Hφ=2π = U†Hφ=0U . Again we assume that the operation of switching
φ from 0 to 2π may be performed adiabatically without closing the excitation
gap, in which case it de�nes a unitary operator F̂ which transforms ground
states (of Hφ=0) into ground states (of Hφ=2π). Accordingly, UF̂ acts in the
ground-state manifold of Hφ=0. Finally, one can show that the two adiabatic

processes satisfy (UF̂ )T̂ = −T̂ (UF̂ ) [23], because one spinon winding around
the cylinder in the presence of a twist φ = 2π experiences an Aharonov-
Bohm phase equal to eiφ/2 = −1 (measured by the gauge-�eld loop mentioned
above). Clearly, this relation cannot be satis�ed in the ground-state manifold
unless the degeneracy is at least 2.

2.4 Half-odd-integer spins and the Lieb-Schultz-Mattis-Hastings
theorem

We consider a lattice spin system with periodic boundary conditions, short-
range interactions, conserved Sz

tot (global U(1) symmetry) and a half-odd-
integer spin (e.g. 1/2) in the unit cell. The lattice dimensions L1, L2, · · · , LD

are taken to be such that each �section� perpendicular to direction 1 has
an odd number (L2 × · · ·LD) of unit cells, and thus has a half-odd-integer
spin. The theorem states that, in the thermodynamic limit, the spectrum
cannot simultaneously satisfy the two conditions: i) unique ground state; ii)
�nite gap to all excitations. Although the proof is quite simple in 1D [6] its
generalization to higher dimensions [25], due to Hastings, is quite involved
[7, 8]. The argument proposed by Oshikawa [24] is less general,11 but its
simplicity o�ers deep insight into the LSM theorem for D > 1.

What is the relation with the above discussion of the QSL ? A conventional
reason for a degeneracy of the ground state is spontaneous symmetry-breaking
(SBB).12 However, ordered states do not generally support fractional excita-
tions (consider a VBC), and are thus not QSLs according to the third de�ni-

11It assumes that the gap does not close when twisting the boundary conditions.
12A magnetically ordered system satis�es the theorem because the spectrum is

gapless due to the presence of a spontaneously broken continuous symmetry (Gold-
stone modes). A VBC has a gapped spectrum, but the ground state is degenerate
in the thermodynamic limit, due to translational symmetry-breaking.
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tion.13 Thus, in the absence of any SSB, one might conclude that the ground
state is unique and should therefore sustain gapless excitations in order to
satisfy the LSM theorem. This is indeed a possibility (the algebraic QSL of
Sec. 5), but the LSM theorem allows another alternative: gapped excitations
above a degenerate ground state without SSB. In such a case, the states in the
degenerate ground-state manifold are locally identical (indistinguishable by
any local order parameter) but globally di�erent due to the topological order
[4] discussed in the previous paragraph. The LSM theorem is useful because it
provides a natural classi�cation for the ground states. A half-odd-integer-spin
system is either i) conventionally ordered (SSB), ii) a gapless QSL, or iii) a
topologically ordered, gapped QSL. Only integer-spin systems have the addi-
tional possibility of being iv) �quantum paramagnets� (non-degenerate ground
state and gapped excitations, as discussed in Sec. 2.2).

3 Mean �elds and gauge �elds

We review here a formalism for describing decon�ned liquids in Heisenberg
models, and discuss the possible emergence of gauge �elds. The orgin of this
approach lies in the slave-particle approaches to the Hubbard and t-J models
[21].

3.1 Fermionic representation of Heisenberg models

The group SU(2) can act on the spinon operators of Eqs. (5-6) in two di�erent
ways, globally, in describing spin rotations, and locally, related to the (gauge)
redundancy of the description of spin operators.

Spin rotations � A global spin rotation is e�ected by multiplying the
doublet d1 ≡ [ci↑ ci↓] to the right by an SU(2) matrix V , d1 = [ci↑ ci↓] →
d1V . By taking the Hermitian transpose of d1 and using V † = V −1, one may

show that d2 =
[
c†i↑ − c†i↓

]
is also transformed by a right-multiplication: d2 →

d2V . Thus d1 and d2 may be grouped into a 2×2 matrix which transforms
under SU(2) rotations by right-multiplication,

ψi =
[
ci↑ ci↓
c†i↓ −c

†
i↑

]
→ ψiV. (9)

From Eq. (9), ψiψ
†
j is manifestly invariant. This allows one to introduce two

rotation-invariant operators, χij and ηij , for each air of sites in the system,

ψiψ
†
j ≡

[
ci↑c

†
j↑ + ci↓c

†
j↓ ci↑cj↓ − ci↓cj↑

c†i↓c
†
j↑ − c†i↑c

†
j↓ c†i↓cj↓ + c†i↑cj↑

]
=

[
−χ†ij −η

†
ij

−ηij χij

]
. (10)

13In principle there can be coexistence of some conventional order and fractional
excitations; this possibility is ignored here.
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The quantity ψi also gives a convenient expression of the spin operators and
of the constraint,

Sa
i =

1
2
Tr

[
ψ†iψi(σa)T

]
, a = x, y, z, (11)

Tr
[
ψ†iσ

zψi

]
= c†i↑ci↑ − ci↓c

†
i↓ = c†i↑ci↑ + c†i↓ci↓ − 1 = 0. (12)

It is useful here to add two other constraints which are consequences of the
�rst, ci↓ci↑ = 0 = η†ii (no double site occupancy) and c†i↓c

†
i↑ = 0 = ηii (no

empty sites). Together, the three constraints can be written in the compact
form

Tr
[
ψ†iσ

aψi

]
= 0 , a = x, y, z. (13)

Gauge transformations� Because of Eq. (6), ci↑ and c
†
i↓ have the same

physical e�ect, namely of decreasing Sz
i by one unit. They can be placed in

a doublet, p1, upon which SU(2) matrices act without changing the physical
spin operators. LetWi be a (site-dependent) SU(2) matrix encoding this gauge

transformation, p1 =
[
ci↑
c†i↓

]
→ Wi p1. It is easy to verify that p2 =

[
ci↓
−c†i↑

]
transforms by the same left-multiplication. Taken together, these two-column
vectors p1 and p2 form once again the matrix ψi. From Eq. (11), it is evident
that the spin operators are gauge-invariant,

ψi →Wiψi, Sa
i → Sa

i . (14)

In summary, global spin rotations are described by right-multiplication of ψ
and local gauge transformations by left-multiplication. As a speci�c example
of a gauge transformation, we consider the U(1) subgroup of SU(2), which is
parameterized by the phase Λ(i) asWi = exp(iΛ(i)σz), and which corresponds
to Eq. (7). A spinon (�anti-spinon�) carries a charge +1 (-1) of this U(1) gauge
�eld. The spin-�ip operator S+

i = ci↑c
†
j↓, is gauge-neutral.

3.2 Local SU(2) gauge invariance

In a path-integral formulation based on the fermionic representation, the
imaginary-time Lagrangian takes the form [11]

L =
∑

i

Tr
[
ψ†i

(
∂τ + A0

i · σ
)
ψi

]
−H, (15)

where H is the Hamiltonian and A0
i = (A0

ix, A
0
iy, A

0
iz) a real, three-component

vector which plays the role of a Lagrange multiplier for the three constraints
of Eq. (13). Consider a time-dependent gauge transformation

ψi(τ) →Wi(τ)ψi(τ). (16)
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To ensure the invariance of the action (15), A0
i must transform as the time

component of an SU(2) gauge �eld,

A0
i · σ →Wi(τ)

(
∂τ + A0

i · σ
)
.W †

i (τ). (17)

From Eq. (11), the Heisenberg interaction can be written as

Si · Sj = −1
8
Tr

[
ψiψ

†
jψjψ

†
i

]
, (18)

a quartic term in fermionic operators which can be decoupled (Hubbard-
Stratonovich procedure) by introducing a 2×2 complex matrix Uij on each
bond 〈i, j〉. The corresponding contribution to the Lagrangian is

−H = − 8
J

∑
〈i,j〉

Tr
[
U†

ijUij

]
−

∑
〈i,j〉

Tr
[
ψ†iUijψj + H.c

]
, (19)

whence a Gaussian integration over Uij returns the spin-spin interaction of
Eq. (18). From Eq. (9), it is clear that U is invariant under spin rotations,
and from Eq. (14) one observes that U transforms as the spatial component
of an SU(2) gauge �eld under gauge transformation,

ψi(τ) →Wi(τ)ψi(τ), Uij(τ) →Wi(τ)Uij(τ)W
†
j (τ). (20)

3.3 Mean-�eld (spin-liquid) states

Mean-�eld Hamiltonian� Various mean-�eld approximations may be ap-
plied when the Heisenberg model is expressed in the form of Eqs. (15) and (19).
As we will show, these can describe a large variety of spin-liquid states, and in
particular the �RVB spin liquids.� The procedure is to replace the �uctuating
�elds Uij(τ) and A0

i (τ) by time-independent, complex matrices U0
ij and com-

plex vectors a0
i , because the mean-�eld Hamiltonian is then quadratic, and

hence soluble, in the fermion operators,14

HMF =
8
J

∑
〈i,j〉

Tr
[
U0†

ij U
0
ij

]
+

∑
〈i,j〉

Tr
[
ψ†iU

0
ijψj + H.c

]
+

∑
i

Tr
[
ψ†i (ai · σ)ψi

]
. (21)

The �rst term is a constant, the second describes spinon hopping and pairing,
and the third term arises from the constraints. Minimizing the energy with
respect to the parameters U0

ij and ai gives the self-consistency conditions

14This approximation is equivalent to particular large-N limits of the model,
obtained when the spin-rotation symmetry group SU(2) is generalized to SU(N)
[26, 27]. With bosonic operators instead of fermions, this type of mean-�eld approx-
imation is closely related to �Schwinger-boson� approaches [28, 29, 30, 31, 32].
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U0
ij =

J

8

〈
ψiψ

†
j

〉
=

[
−χ0∗

ij −η0∗
ij

−η0
ij χ0

ij

]
,

〈
Tr

[
ψ†i (ai · σ)ψi

]〉
= 0, (22)

where we have used the notation χ0
ij ≡ 〈χij〉 = 〈c†i↑cj↑ + c†i↓cj↓〉 and η0

ij ≡
〈ηij〉 = 〈c†i↑c

†
j↓ − c†i↓c

†
j↑〉. From Eq. (20), the parameters U0

ij and ai are not

gauge-invariant,15 so di�erent mean-�eld parameters may lead to the same
physical quantities. This will have important consequences in Sec. 3.4.

Ground state and excitations of HMF � Equation (21) describes
a system of free spinons. The ground state is obtained by calculating the
spinon band structure and �lling the negative-energy single-particle states.
The resulting state satis�es the constraints [Eq. (13)] only on average, and is
therefore not a valid spin- 12 wave function. One way to obtain a spin state is to
apply a Gutzwiller projection in order to remove con�gurations with empty or
doubly occupied sites [33]. This can be performed numerically by using Monte
Carlo methods [34, 33]. Another approach is to analyze the qualitative e�ects
of �uctuations, based on symmetry arguments.

Because Uij and A0 are invariant under spin rotations, HMF does not
have any preferred direction in spin space. The mean-�eld ground state is
thus a total-spin singlet, without magnetic long-range order. It is already a
spin-liquid state in the sense of de�nition 1 (Sec. 2.1). This type of mean-�eld
approach is not appropriate to describe Néel-ordered phases; bosonic repre-
sentations of the spin are more appropriate, because bosons may condense.

In addition, HMF contains spin- 12 excitations, obtained by adding or re-
moving one spinon to or from the ground state. A crucial question is whether
the existence of �decon�ned� (in fact, free at this crude level of approximation)
spinons is merely an artefact of the mean-�eld approximation. In such a case,
the inclusion of �uctuations (in particular of gauge-�eld �uctuations) would
con�ne the spinons. The other possibility is that the spinons remain decon-
�ned in the presence of �uctuations (or Gutzwiller projection), in which case
the mean-�eld approximation is indeed a useful starting point for an accurate
description.16

15

D
ψiψ

†
j

E
6= 0 is in apparent contradiction with Elitzur's theorem, which states

that non-gauge-invariant quantities should average to zero. Some slight abuse of
notation has been committed here, as true expectation values in the mean-�eld
theory should be averaged over all gauge-rotated copies of a given representative
state.

16A similar question arises concerning the presence of a gap in the excitation
spectrum. HMF can be gapless, as in the π-�ux example below. It is then important
to understand whether �uctuations beyond the mean-�eld approximation can act
to open a gap. In some cases, the spectrum is expected to remain gapless, although
�uctuations will in general change the correlation exponents. This is the case if the
terms which could potentially open a gap (terms relevant in the renormalization-
group sense) are actually forbidden by gauge invariance or by symmetry (Sec. 3.4).
Then the mean-�eld approximation is again a good starting point to describe a
gapless spin liquid.
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Example: the �π-�ux� state � Consider the mean-�eld state on the
square lattice introduced by A�eck and Marston [27], which is equivalent to
the �mixed s+id� RVB state [35] and labeled �SU2Bn0� in Wen's classi�cation
[36]. This state has ai = 0, ηij = 0, and a modulus |χij | = χ0 identical on all
bonds. The phases θij = arg (χij) are such that θ12 +θ23 +θ34 +θ41 = π (mod
2π) on every square plaquette. As in the case of hopping amplitudes for a
charged particle in the presence of a uniform magnetic �eld, there is no gauge
in which θij is translation-invariant. The unit cell de�ned by θij contains
at least two sites. A possible choice is θij = π

4 (−1)ix+jy , corresponding to

U0
ij = iχ0

[
1 0
0 1

]
for bonds i → j oriented as in Fig. 1. The corresponding

mean-�eld Hamiltonian is

HMF = 2χ0

∑
〈i→j〉,σ=↑,↓

(
ic†iσcjσ + H.c.

)
+ constant, (23)

and gives two bands of quasiparticles with dispersion relations [27]

E±(k) = ±4χ0

√
cos(kx)2 + cos(ky)2 (24)

(in the Brillouin zone de�ned by |kx| + |ky| ≤ π). The Fermi energy is at
E = 0,17 where the two bands meet at kA = (π/2, π/2) and kB = (π/2,−π/2).
To describe the long-distance properties of the system, it is useful to focus on
low-energy excitations and to linearize the spectrum in the vicinity of kA and
kB . The corresponding Hamiltonian is that for four fermion �avors (two for
the spin and two for the A- or B-�valley� index) of two-component18 Dirac
fermions.

Because spinons are necessarily created in pairs, we show in Fig. 1 the
energy of the two-spinon continuum, E+(k− q) +E+(q), as a function of k.
These excitations are gapless and linearly dispersive around the four minima
(located at k = (0, 0), (π, 0), (0, π), and (π, π)). As we will discuss in Sec. 3.4,
the presence of gapless �uctuation modes around this mean-�eld state means
that the stability of the mean-�eld approximation is a priori not at all clear. A
somewhat involved analysis suggests, however, that it could indeed represent
a stable spin-liquid phase with gapless magnetic excitations (remnants of the
excitations discussed above) and algebraic correlations [37].

Dimerized mean-�eld states � Among all the di�erent self-consistent
mean-�eld states, the �dimerized� states have the lowest energy at the mean-
�eld level for a large class of lattices [38]. Such a mean-�eld solution can be
viewed as a hard-core dimer covering of the lattice (Fig. 2): χ0

ij = Jmax/2
on the bonds occupied by a �dimer� and χ0

ij = 0 otherwise, while η0
ij = 0

everywhere. The con�guration of �dimers� is such that each site is touched
by exactly one dimer, and only occupies the bonds (ij) with the strongest

17In agreement with Eq. (22), the system is half-�lled.
18There are two zero-energy single-particle states when E+ = E−.
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π π π

πππ

Fig. 1. Left: bond orientations used to de�ne the mean-�eld π-�ux state on the
square lattice (χi→j = −χj←i = iχ0 ∈ iR) [27]. Right: minimum energy for a pair
of spinons with total momentum k = (kx, ky).

antiferromagnetic exchange, Jij = Jmax. Because the number of such dimer
coverings is (usually) an exponential function of the number of sites, these
mean-�eld solutions are massively degenerate. However, we expect that the
�uctuations of the �eld U will lift this degeneracy. Indeed, if these �uctua-
tions are treated perturbatively (1/N expansions), one obtains an e�ective
model [39, 40] in the subspace of dimerized states, known as a quantum dimer
model [41]. Fluctuations may also lower the energy of some other (undimer-
ized) mean-�eld solutions, and certain types of solution may also be stabilized
by other interactions (notably by ring-exchange terms). For these reasons, it
is very important to study mean-�eld states which are locally stable even if
they are not global energy minima at the mean-�eld level; on this point we
comment that it is much more signi�cant to compare energies after Gutzwiller
projection.

π

0

0
0

0

0

0
π

0

0
0

0
0

π

0
0

0

A B C

Fig. 2. Examples of mean-�eld states on the kagome lattice. A: dimerized state
with χ0

ij = J/2 on the thick bonds and χ0
ij = 0 on all other bonds. Such states are

the (degenerate) lowest-energy states at the mean-�eld level [38]. B: state including
�uctuations δχij of the bond �eld χij at order (δχij)

3 lifts this degeneracy in favor of
con�gurations maximizing the number of hexagons with three �dimers� [40]. C: [0, π]-
�ux phase on the kagome lattice [42, 43]. Thin (thick) bonds have χij = +χ0(χij =
−χ0) ∈ R, such that the �ux is 0 on triangles and π on hexagons.
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3.4 Gauge �uctuations

For a given mean-�eld solution, its stability must be veri�ed by investigating
the low-energy �uctuation modes. In a large N formalism the mean-�eld so-
lution is exact at N = ∞ and the question to be adressed is: does the phase
found at N = ∞ survive at large but �nite N , that is when the �uctua-
tions modes of the �elds A0

i (τ) and Uij(τ) are introduced. In other words,
do we have a (quantum) phase transition between the (mean-�eld) state at
N = ∞ and 1 � N < ∞. If any mode or modes drive(s) the system to an
instability, the mean-�eld approximation is not an appropriate starting point
and the physical properties of the system (presence/absence of a gap, broken
symmetries, excitations) cannot be those of the mean-�eld Hamiltonian. On
the other hand, if no modes lead to a divergence of physical quantities, the
sign of an instability, the mean-�eld solution may describe, to some extent,
a real phase of the spin model (at least for large enough N). Of course, it
is di�cult to examine all possible �uctuations, as this would be equivalent
to solving the original spin model. As a �rst approximation, gapped degrees
of freedom may be integrated over (or simply ignored), as they are expected
to play no qualitative role at low energies. By contrast, gapless modes are
potential sources of instability, and thus are likely to in�uence the low-energy,
long-distance physics of the system.

Fermion density �uctuations may be gapped or gapless, depending on the
spectrum of HMF. When these modes are gapped, the fermions form an in-
compressible state at the mean-�eld level, and the density �uctuations are ex-
pected to have no e�ect on the long-distance properties of the system. There
are three simple cases [4] where such a thing happens: i) the bond parameters
U0

ij break the translational invariance in such a way that the ground state
of HMF is a band insulator (Fermi level between a completely �lled and a
completely empty band), as in the dimerized solutions of Ref. [38]; ii) HMF

contains a pairing term (η 6= 0) so that its ground state is a BCS-like gapped
�superconductor� [4]; iii) HMF contains a non-trivial �ux (i.e. di�erent from
0 or π) piercing some of the plaquettes, and its ground state is analogous to
a set of completely �lled Landau levels, as in the integer Hall e�ect [44].

Gauge excitations with a continuous gauge group are also natural candi-
dates for gapless excitations. The reason for this is that the gauge invariance
forbids �naive� mass terms, such as (Aµ)2, for the gauge �eld in the same
way that it preserves the masslessness of ordinary photons; however, more
elaborate mechanisms, such as Anderson-Higgs, may still open a gap. Gauge
excitations are also important because they can mediate long-range interac-
tions between the spinons. The importance of gauge modes in slave-boson
mean-�eld theory was �rst put forward by Baskaran and Anderson [45].

The spin models of interest here have a local SU(2) gauge invariance
(Sec. 3.2). Thus one may ask why the �uctuations are not always described by
an SU(2) gauge �eld, or alternatively, why the nature of the gauge �eld does
actually depend on the particular mean-�eld state. The answer is that the
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mean-�eld parameters U0
ij break partially the local SU(2) gauge invariance

(unless all the U0
ij are diagonal matrices on all bonds), leaving only a lower

invariance symmetry. This is in a sense analogous to global symmetries, where
the number of Goldstone modes depends on the number of broken continuous
symmetries. Following Wen [4, 36], we will discuss how to construct the gauge
�elds describing �uctuations about a given mean-�eld state.

Projective symmetry group and invariant gauge group

Because the mean-�eld parameters U0
ij are not gauge-invariant, two apparently

di�erent solutions may be physically identical. A set of parameters U0
ij which

are not translationally invariant may describe a (mean-�eld) QSL with no
broken symmetry.

As an example, consider the π-�ux state de�ned by Eq. (23). Under
any translation by one lattice constant (in the x or y direction), U0

ij is

changed into Ũ0
ij = −U0

ij . However, the gauge transformation associated with

Wi = (−1)ix+iy I maps Ũ0 back to U0, and thus both U0 and its translation,
Ũ0, label the same mean-�eld state.19 This result illustrates that the physical
symmetries are encoded in a non-trivial way in the mean-�eld parameters U0

ij .
In fact this is a fundamental property, inherent to any description of the sys-
tem in terms of fractional excitations (in this case spinons): the Hamiltonian
describing the hopping of the spinons requires a gauge choice and is appar-
ently less symmetric than the original spin model. This led X.-G. Wen [36] to
introduce the concept of Projective Symmetry Group (PSG).

De�nition of the PSG � Let T : i 7→ T (i) be a lattice symmetry of
the original spin model and W be a (time-independent) gauge transformation
[Eq. (20)]. The PSG associated with the mean-�eld parameters {U0

ij ,ai} is
de�ned as the set of all the pairs (T,W ) satisfying

U0
ij = WiU

0
T (i)T (j)W

†
j , ai · σ = Wi(aT (i) · σ)W †

i ∀i, j. (25)

An element of the PSG is thus a lattice symmetry followed by a gauge trans-
formation, such that the mean-�eld parameters U0

ij and ai are unchanged. In
the �π-�ux� example above, the PSG contains (among other elements) the
translations by one unit cell associated with Wi = exp(iΛiσ

z).
The invariant gauge group (IGG) [36] is a special subgroup of the PSG,

containing all the elements (T,W ) where T is the identity. As we will show,
the IGG determines the gauge group, and therefore the nature of the gauge

�uctuations around the mean-�eld solution.
We consider a mean-�eld state and denote by I its IGG. We �rst assume

for simplicity that I is isomorphic to U(1). In such a case, the gauge trans-
formations W θ ∈ I can be parameterized as

W θ : i 7→ W θ
i = exp (iθ ni · σ) , (26)

19They give the same spin- 1
2
wave function after Gutzwiller projection.
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where W θ
i is an SU(2) rotation of angle θ ∈ [0, 2π[ about the axis de�ned by

the (spatially varying) unit vector ni. At each site, we rotate ni to the z axis,

ViW
θ
i V

†
i = exp (iθ σz) . (27)

These elements Vi ∈ SU(2) de�ne a new gauge, in which U0 becomes Ũ0,
de�ned by

Ũ0
ij = ViU

0
ijV

†
j , (28)

and certain types of �uctuation of Ũ about Ũ0 may be parameterized by a
real �eld A,

Ũij = Ũ0
ije

iAijσz

. (29)

We will now show that A is the spatial component of a U(1) gauge �eld,
and is thus potentially important in describing the low-energy excitations
of the system. We consider a particular family of gauge transformations,
i 7→ exp [iθ(i)σz], where the angle θ parameterizing the elements of the IGG
[Eq. (27)] has been promoted to a local variable θ(i). The bond �eld Ũij

transforms according to Ũij → eiθ(i)σz

Ũije
−iθ(j)σz

, whence only a few short

algebraic manipulations are required20 to cast Ũij in the form of Eq. (29),
with the replacement Aij → Aij + θ(i)− θ(j). Thus these phase �uctuations
of the bond variables are those of a U(1) gauge �eld. In some cases [36], several
subgroups of the IGG are isomorphic to U(1). Each one can be parameterized
as in Eq. (26), but with di�erent directions n1

i , n2
i , . . .. Repeating this con-

struction for each subgroup leads to the same number of U(1) gauge �elds.
We note �nally that the IGG always contains the group Z2, because the gauge
transformation W : i 7→ −I leaves all U0

ij unchanged. The construction of the
associated Z2 gauge �eld, Aij ∈ {0, π}, is identical to the U(1) case, except
for the restriction θ(i) ∈ {0, π}.

20 One uses Eqs. (27),(28), and (29) to transform the right-hand side,

eiθ(i)σz

Ũij = eiθ(i)σz

Ũ0
ije

iAijσz

(30)

= eiθ(i)σz

ViU
0
ijV
†

j e
iAijσz

(31)

= ViW
θ(i)
i U0

ijV
†

j e
iAijσz

, (32)

and then employs the fact that, for any angle θ,W θ belongs to the IGG of the mean
�eld U0. Setting θ = θ(i) yields W

θ(i)
i U0

ij = U0
ijW

θ(i)
j , and �nally

Ũij → ViU
0
ijW

θ(i)
j V †j e

iAijσz

e−iθ(j)σz

(33)

= ViU
0
ijV
†

j e
iθ(i)σz

eiAijσz

e−iθ(j)σz

(34)

= Ũ0
ije

iθ(i)σz

eiAijσz

e−iθ(j)σz

. (35)
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Two simple examples of IGG

As a �rst exercise, one may determine the IGG of the π-�ux state on the square
lattice, where U0

ij = ±iχ0 is proportional to the identity. By de�nition, an

element of the IGG is a set of matricesWi ∈ SU(2) satisfyingWiU
0
ijW

†
j = U0

ij

on all bonds. From the particular form of U0, this equality becomesWiW
†
j = I,

showing that Wi must be the same (arbitrary) SU(2) matrix on every site.
We have thus shown that the IGG of this spin-liquid state is isomorphic to
SU(2).

As a second example, one may consider the spin liquid proposed by Hast-
ings [42] and Ran et al. [43] for the kagome-lattice Heisenberg model. At the

mean-�eld level, the bond �eld takes the values U0
ij = ±χ0

[
−1 0
0 1

]
= ±χ0σ

z,

with the signs chosen to produce a �ux 0 for each triangle and π for each
hexagon (Fig. 1). From this particular form of U0, the condition on W ∈ I
may be expressed as Wj = σzWiσ

z. Thus if Wi is speci�ed at any point i,
all the other matrices are �xed. By propagating this condition around any
triangle of the lattice, one �nds W0 = (σz)3W0(σz)3 = σzW0σ

z, i.e. W0 must
commute with σz, and therefore has the form of Eq. (26) with n = [0, 0, 1].
Thus I = U(1).

PSG beyond the mean-�eld approximation

Thus far, we have de�ned the PSG as the symmetry of the mean-�eld Hamilto-
nian (through U0

ij ; the time component a is omitted hereafter for simplicity).
The utility of the PSG is, however, that it is robust to �uctuations, at least
at the perturbative level [36]. We denote by L(ψ,U) the exact Lagrangian of
the spin model, in terms of the fermions ψi(τ) and bond �elds Uij(τ) intro-
duced in Sec. 3.2. L is invariant under any gauge transformationW and lattice
symmetry T : L(ψ,U) = L(PψP−1, PUP−1), where P = (W,T ) need not be
in the PSG of U0. However, if P ∈ PSG, then U0 = PU0P

−1, and the La-
grangian L0 describing the �uctuations, de�ned by L0(ψ, δU) = L(ψ,U0+δU),
is invariant: L0(ψ, δU) = L(ψ,U0 + δU) = L(PψP−1, P (U0 + δU)P−1) =
L(PψP−1, U0 + P (δU)P−1) = L0(PψP−1, P δUP−1). In addition, the mean-
�eld ground state and the mean-�eld Hamiltonian are also symmetric under
the PSG, because the expectation values 〈ψiψ

†
j 〉 = U0 are by de�nition PSG-

invariant. Thus the theory for the �uctuations about a given mean-�eld U0 has

the symmetry group of its PSG.
We appeal now to the general property that, unless a phase transition

occurs, broken or unbroken symmetries do not change their nature under the
inclusion of perturbations. The ground state will receive some corrections once
�uctuations are included but, on the assumption that the mean-�eld state ex-
ists within a stable phase, the symmetries will not change. The PSG is not
only a property of the mean �eld, but is a property of the whole phase. Dif-
ferent spin liquids may be distinguished and hence classi�ed by the symmetry
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group of the Hamiltonian driving their spinon dynamics, which can be read
from the PSG of the appropriate mean-�eld starting point, HMF.

This symmetry principle has important consequences. To obtain an e�ec-
tive description of L0(ψ, δU), some high-energy modes can be integrated out
formally. One may, for example, eliminate the fermionic modes which are far
from the Fermi level. In the example of the π-�ux state (Eq. (23), such a pro-
cedure leads to Dirac fermions with a linear dispersion relation. One may also
integrate out the amplitude �uctuations of the bond variables Uij , retaining
only the phase �uctuations (which in the example of Eq. (23) is equivalent
to neglecting the �uctuations of |χ0|). Under the assumption that no change
of symmetry occurs when including these �uctuations, any term (even if it
is invariant under all lattice symmetries) which is not PSG-invariant cannot
appear in the e�ective action L0.

Consider the example of a mean-�eld Hamiltonian where the spinons are
gapless at Nf points in the Brillouin zone, and are described by 2Nf �avors
of two-component Dirac fermions after linearization (the factor of 2 given

by the spin ↑, ↓). The corresponding fermion operators, Ψ
α=1···2Nf

i , are linear
combinations of the microscopic spinon operators, ci,σ, and each element of
the PSG is equivalent to a particular transformation of the Ψ operators (a
detailed example is presented in Ref. [46]). The e�ective action for the Dirac
fermions (and their associated gauge �eld) is obtained by a formal integration
over higher-energy degrees of freedom. During this process, terms which are
quadratic in Ψ may a priori be generated and open a gap (which would spoil
the algebraic nature of the spin correlations). However, from the discussion
above, such terms are constrained to be invariant under the PSG. In certain
cases [37, 43, 46], one may show that none of the possible terms arising this
way is PSG-invariant. Such terms cannot be generated by integrating out the
�uctuations (particularly of Uij) perturbatively, and the system may remain
gapless.

In such cases, the PSG �protects� the gapless spectrum. This can lead to
stable critical states, even when the Hamiltonian has not been tuned to a
critical point. For a recent example on the kagome lattice, see Refs. [43, 46].
We note in concluding this section that the PSG analysis does not provide
any information about non-perturbative e�ects caused by �uctuations. This is
the case, in particular, for the proliferation of magnetic monopoles in a U(1)
gauge �eld [29], which can lead to spinon con�nement (but, however, is not
expected to occur if Nf is su�ciently large [37]).

4 Z2 spin liquids

The simplest spin-liquid states (according to de�nition 3) for a two-dimensional
spin- 12 system are the Z2 liquid states, which have gapped spinons. The name
is taken from the fact that the gauge group (IGG) relevant for describing
its elementary excitations is Z2. All the excitations are gapped, and the spin
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correlations are short-ranged. The magnetic (spin- 12 ) excitations are decon-
�ned spinons, which may be fermions or bosons. In addition, the system has
singlet (total spin S = 0, i.e. non-magnetic) excitations which are �uxes (or
vortices) of the Z2 gauge �eld. These vortices were discussed in the early days
of RVB theories [47, 48, 4] and have more recently been christened �visons�
[49]. Although such spin liquids can be discussed within the slave-fermion for-
malism [36], below we describe the approach based on the short-range RVB
framework.

4.1 Short-range RVB description

An RVB wave function can be written as |φ〉 =
∑

c φ(c)|c〉, where c labels a
valence-bond covering of the lattice. This state is manifestly a spin singlet, but
the nature of the spin correlations depends on the weights φ(c). In particular,
if this state has a su�cient weight φ(c) for con�gurations c with long singlet
bonds, 〈φ|Si ·Sj |φ〉 can even be long-range-ordered (Néel order) [50]. Here we
focus instead on states where the weight φ(c) can be neglected if the valence-
bond exceeds a �nite length ξ ∼ O(1). In this case, spin correlations are
expected to decay exponentially.

However, this condition is not su�cient to guarantee a liquid, as a VBC
wave function can also be written using short-range valence-bonds. In a VBC,
one may de�ne �parent� con�gurations ci (i = 1 · · · d, where d is the degener-
acy) which have the spatial periodicity of the crystal. In a columnar VBC on
the square lattice, the parent states would be the 4 columnar con�gurations.
If |φ〉 is a crystalline state, each covering c can be compared to its �closest�
parent, from which it will di�er only by collection of small loops.21 These loops
represent �uctuations around the maximally ordered con�gurations [17].

If |φ〉 describes an RVB liquid, there is no parent con�guration to which to
compare c, but one may still consider the transition graphs between two typical
con�gurations c and c′. Such loops can be visualized as resulting from a process
where two neighboring spinons are created out of c, propagate along a closed
loop, and are annihilated to form again a short-range valence-bond in c′. On
the assumption that these virtual processes ocurring within the ground state
contain some information about elementary excitations, the characteristic size
of the resonance loops in the ground state represents the typical distance
between excited spinons. If this lengthscale is �nite, it would indicate spinon
con�nement. Because the short-range RVB liquids are by contrast decon�ned,
the associated resonance loops should be large, with their size described by
a scale-invariant (critical) distribution. We �nd here an interesting situation
where the spectrum is gapped, and local observables are short-ranged, but
some critical phenomena are �hidden� in the loop distribution of the ground-

21We employ the standard notion of the transition graph to compare di�erent
valence-bond con�gurations. By overlaying two con�gurations c and c′, one obtains
closed loops by following alternately a valence bond of c and a valence bond of c′.
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state wave function. These loops are related to Wilson loop operators in a
gauge-theory description.

With periodic boundary conditions, one may choose a closed loop ∆1 on
the dual lattice, which winds around the torus in the direction 1. Short-range
valence-bond con�gurations may then be sorted according to the parity P1 =
±1 of their number of valence-bonds crossing ∆1. P1 is a topological invariant,
in that it cannot be changed by any local operator (for precise statements see
Ref. [51]). However, moving a spinon around the system in direction 2 does

change P1, which is the analog of the operator UF̂ discussed in Sec. 2.3. P1

de�nes two topological sectors, while P1 and P2 together de�ne four. These
sectors are locally equivalent: if a valence-bond con�guration is known only
over a �nite region of the lattice, it is not possible to decide to which sector
it belongs [52]. Because conventional liquids are insensitive to their boundary
conditions (compared to solids), a short-range RVB liquid, where all local
observables have short-range correlations, can reach the lowest ground-state
energy equally well in all sectors.22 Thus a Z2 liquid has as many ground
states as it has topological sectors.

4.2 Z2 gauge theory, spinon decon�nement, and visons

In a VBC, the con�ning potential experienced by the spinons arises from
the ordered background. It is thus plausible that valence-bond liquids do not
generate such a con�nement force. To show that spinons truly are decon-
�ned requires a deeper analysis. One possibility is to derive an e�ective Z2

gauge theory [53], which is known to have a decon�ned phase, by analyzing
the structure of the gauge �uctuations about an appropriate mean-�eld state
[4].23 This approach has also been described in the context of an Sp(N) gener-
alization [57] of a frustrated Heisenberg model on the square lattice (large-N
limit) [31], and is similar to the mean-�eld theory of Sec. 3 except in that it
has bosonic spinons. In particular, it has been shown that the phase �uctu-
ations of the bond variables are described by a U(1) or a Z2 gauge theory,
depending on whether the short-range spin correlations are collinear or non-
collinear, respectively (these two cases have di�erent IGGs). Short-range RVB

22 It is instructive to compare with the case of a VBC: for a general VBC covering,
invariant under two translations T1 and T2, choose a lattice size and geometry such
that the periodicity vectors are an even multiple of T1 and an even multiple of T2.
The directions of T1 and T2 are also taken to de�ne the cuts ∆1,2 required to de�ne
parity sectors. It is easy to verify that these choices guarantee that all ordered parent
con�gurations, and thus the degenerate ground states in the VBC phase, belong to
the same �even×even� topological sector. The lowest states in the other sectors will
lie higher by an energy proportional to the linear system size.

23An alternative is to describe short-range RVB liquids by e�ective quantum
dimer models [41], such as those considered in Refs. [54, 55], which in turn can be
mapped (sometimes exactly [55]) onto Z2 gauge theories [56].
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spin liquids correspond to the Z2 case, where the presence of competing in-
teractions is essential to produce the non-collinear spin structures responsible
for the emergence of Z2 gauge degrees of freedom and spinon decon�nement.
The large-N description of gapped Z2 liquids has been extended to several
2D frustrated models [58, 59, 60].

We consider a mean-�eld state {U0
ij ,ai} with a gapped spinon spectrum

[obtained from Eq. (21)] and IGG= Z2. From the discussion of Sec. 3.4, the
relevant gauge modes can be parameterized with a Z2 gauge �eld Aij ∈ {0, π}
by Uij = U0

ije
iAij . Because the spinons are gapped at the mean-�eld level,

they can be integrated out, which generates short-range interactions for Aij .
Given that σz

ij ≡ eiAij = ±1, these interactions must be invariant under the
Z2 gauge transformations σz

ij → ηiσ
z
ijηj , where ηi = ±1 may take an arbitrary

value at each lattice site. A product Bp = σz
12σ

z
23 · · ·σz

n1 around any plaquette
p of the lattice is such an invariant: this is the Z2 �magnetic� (or gauge)
�ux. On each bond we denote by σx

ij the operator which changes σz
ij = 1 to

σz
ij = −1 (and vice versa); this is the �electric� �eld. The Z2 gauge invariance

requires that the Hamiltonian commutes with any Gi0 =
∏p

α=1 σ
x
i0iα

, where
i1, · · · , ip are the neighbors of site i0, because Gi0 generates the elementary
gauge transformation de�ned by ηi0 = −1 and ηj 6=i0 = 1.24 Thus the �electric�
�eld is also gauge-invariant, and hence is an allowed term in the e�ective
Hamiltonian for the gauge �uctuations.

To discuss the typical phenomenology of such a Z2 gauge theory, we con-
sider the simplest Hamiltonian

HZ2 = −Γ
∑

(ijkl)=�

σz
ijσ

z
jkσ

z
klσ

z
li − J

∑
〈i,j〉

σx
ij , (36)

where Γ controls the �magnetic� energy term and J the �electric" one, and
the sums run over all plaquettes and bonds respectively. Creating a pair of
(in�nitely heavy) �test� spinons at sites i0 and in can be e�ected by the

gauge-invariant operator c†i0↑σ
z
i0i1

· · ·σz
in−1in

cin↑ [as in Eq. (8)], which changes
(anticommutes with) σx on all the bonds along the path i0 · · · in. For Γ/J � 1
we may ignore the �magnetic" term, and the ground state has σx = 1 every-
where. Because any bond with σx

ij = −1 introduces a high energy penalty,
the spinons experience a potential which grows linearly with their separation,
i.e. they are con�ned. By contrast, the spinons are essentially free in the limit
Γ/J � 1, where the model can be studied perturbatively from the J = 0
limit.

At J = 0, the ground state has σz
ij = 1, and the elementary excitation

is a gapped and localized Z2 �ux, for example on plaquette p0, correspond-

24States must also be gauge-invariant. Fermions transform according to ψi →
ηiψi, which corresponds to the gauge generator Fi = e

iπ(c
†
i↑ci↑+c

†
i↓ci↓). Physical

states should therefore satisfy GiFi|φ〉 = |φ〉. However, Fi = 1 because of the con-
straint [Eq. (6)], and thus Gi|φ〉 = −|φ〉, which is the origin of the term odd Z2

gauge theory [56].
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ing to Bp0 = −1, whereas Bp = 1 elsewhere (we specialize the discussion
to dimension D = 2). Such vortices (�visons� [49]) can be created in pairs
by applying to the ground state a product

∏
l σ

x
l of electric-�eld operators

involving all the bonds l cutting some path on the dual lattice (by consid-
ering the operator G, one observes that the resulting state is una�ected by
local deformations of the path). The cores of the two visons are located in
the plaquettes at the two ends of the path, and the energy is independent
of their separation. Away from J = 0, visons acquire a �nite bandwidth and
non-trivial short-range interactions. However, if short-distance e�ects close to
the vortex core are neglected, the vison creation operator is essentially the
product of Z2 �electric-�eld� operators as de�ned above.

To see what this means in the RVB description, we note that eiAij can be
viewed as an operator which shifts the valence bonds by one lattice constant
(Sec. 2.3). Because the electric �eld σx

ij anticommutes with σz
ij = eiAij , it can

be interpreted as an operator measuring the presence or absence of a valence-
bond between sites i and j. Thus the vison creation operator counts the parity

of the number of valence bonds crossing a path ending at the vortex core (the
other end may be at the boundary of the system or at another vortex core). In
addition to local modi�cations close to the core, a vison excitation is obtained
from the ground state by changing the sign of the valence-bond amplitude
φ(c) if the number of valence-bonds crossing the path is odd.

As suggested by the names �electric� and �magnetic�, a spinon winding
around a vison experiences a long-range Aharonov-Bohm e�ect, corresponding
to a phase factor −1. In the approach discussed here, spinons are fermionic,
and thus if a bound state of a spinon and a vison happens to be energetically
favorable, the resulting composite spin- 12 excitation would be a boson.

4.3 Examples

In this section we review a (not exhaustive) selection of lattice models with
a gapped, fractionalized Z2 phase. The Ising-like model introduced by Kitaev
[61] is quite possibly the simplest example. It contains four-site interactions
between Ising spins, and can be solved exactly, but has no continuous sym-
metry and is not microscopically related to the RVB states expected in frus-
trated, Heisenberg-like magnets. Still, it provides a very simple realization
of spin systems with �spinon�- and �vison�-type excitations. A related model
was introduced in Ref. [62]. The bosonic models discussed by Motrunich and
Senthil [63] also have a Z2 phase and are somewhat closer to the types of
magnets discussed here, in that they possess a global U(1) symmetry. The
model of Balents, Fisher, and Girvin [64] (see also [65]) is a spin- 12 model on
the kagome lattice, with easy-axis, Heisenberg interactions between 1st, 2nd,
and 3rd neighbors. It is one of the simplest known Heisenberg-like models with
a well-characterized Z2 liquid phase.

Several numerical studies have also found indications of possible gapped
QSL phases in SU(2)-symmetric spin- 12 models. These systems are, however,
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hard to simulate, and the theoretical understanding of the candidate QSL
states which emerge remains rather incomplete. Here we mention also models
with four-spin �ring� exchange on the triangular lattice [66], with J1−J2−J3

interactions on the honeycomb lattice [67], and with J1 − J2 [68] or J1 − J3

[69] interactions on the square lattice.
Although a dimer may be viewed as a pair of nearest-neighbor spins cou-

pled in a singlet state, quantum dimer models are not related exactly to sim-
ple SU(2) magnets. However, they do provide simple realizations of Z2 liquids
[54, 55], and can also be used to construct �by hand� SU(2) spin models with
QSL ground states [70].

4.4 How to detect a gapped Z2 liquid

In this section we consider some observables which can be used to investigate
whether a system is a gapped QSL. First, the system should not develop any
SSB upon cooling. If the system ful�ls the conditions of the LSM theorem
(energy gap and half-odd-integer spin per unit cell, Sec. 2.4), the absence of
SSB at T = 0 is in fact su�cient to guarantee the existence of fractionalized
excitations. In this case, the detection of an energy continuum in the dynam-
ical spin structure factor (accessible through inelastic neutron scattering), as
opposed to the single peak characteristic of a long-lived spin-1 excitations, is
a signature of spinon decon�nement. In the case of a Z2 liquid, short-range
vison correlations are a further necessary condition (for example Ref. [65]),
and a possible experimental technique for the detection of visons in a doped
Z2 liquid was proposed in Ref. [49]. Theoretically, another test is to search
for a ground-state degeneracy and to verify that the ground state cannot be
distinguished by any local observable in the thermodynamic limit [22, 52]. We
mention �nally that the topological order can also be detected from the wave
function itself, by analyzing its bipartite entanglement entropy [71, 72].

5 Gapless (algebraic) liquids

The mean-�eld theory described in Sec. 3 can lead to states with a gapless
spinon and/or a gapless gauge-excitation spectrum. In some cases, these gap-
less QSLs have been argued to be stable with respect to �uctuations. The
gapless excitations mean that these new states of matter are a priori quite
�fragile�. If the spinons are gapless at the mean-�eld level, there are possible
�mass� terms which could be generated when including �uctuations (even if
these are weak), and which could open a spin gap (i.e. cause an instability
towards a gapped QSL or some type of VBC). However, as noted in Sec. 3.4,
these terms are sometimes forbidden by the PSG. One must then consider the
e�ect of gapless gauge modes, for example if the IGG is U(1). With gapped

matter �elds, which here are the spinons, such compact lattice gauge theories
are generically in a con�ned phase in 2D due to the proliferation of �magnetic
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monopoles� (particular space-time con�gurations of the gauge �eld [73]), and
the mean-�eld theory is unstable to gauge �uctuations [29, 30]. However, this
result does not always apply in the presence of gapless spinons with a lin-
ear dispersion relation (one or more �Dirac cones�, as in the π-�ux state), in
which case the gaplessness of the mean-�eld state may survive �uctuations
[74, 37, 75]. The resulting QSLs are known as �U(1)�, �algebraic�, or �long-
range RVB� spin liquids. The rich physics of these critical states is closely
related to that of �decon�ned critical points� [76], because in both cases the
monopoles are irrelevant for the low-energy properties. The �π-�ux� state
[27, 37] on the square lattice and an analog on the kagome lattice [42, 43]
are two examples of mean-�eld states with Dirac-type spinon spectra which
have been argued to survive �uctuations and to give rise to algebraic spin
liquids. It should also be stressed that spinons are not free quasiparticles af-
ter �uctuations are taken into account, even at very low energy. Because of
the strong interactions with the gauge modes, many correlation functions (in-
cluding spin correlations) show an algebraic decay with non-trivial exponents
(di�erent from the mean-�eld ones) [74, 37, 75]. To our knowledge, there is as
yet no lattice spin model for which clear evidence of such an algebraic QSL
has been found.

6 Other spin liquids

We have included several families of QSL in the present review, but have also
omitted several important ones. Here we provide a brief list of some of these.
Chiral spin liquids [77, 44], which have spontaneous breaking of time-reversal
symmetry (and therefore do not obey de�nition 2), have decon�ned spinons.
The mechanism by which these systems can escape con�nement is the exis-
tence of a Chern-Simons term, allowed because of the time-reversal symmetry-
breaking, in the e�ective action, which gaps the gauge modes. We also mention
possible QSL states with rich topological structures, including fractional exci-
tations with non-Abelian statistics [78, 79, 80, 81]. A further class of quantum
spin liquid is the set of �algebraic vortex liquids� [82], proposed in certain
frustrated models with easy-plane interactions; their description is based on
a mapping of the vortices to fermionic degrees of freedom.

7 Conclusion

We have introduced some theoretical ideas for describing disordered ground
states in Mott insulators (by which is meant that the total spin is a half odd
integer per unit cell). Using the fermionic representation of the spin operators,
we have discussed how gauge �elds emerge as �uctuation modes around given
mean-�eld solutions of the Heisenberg model. The stability and hence valid-
ity of such a mean-�eld approximation depends on whether the gauge �eld
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mediates a con�ning interaction between the spinons (instability) or whether
the spinons remain decon�ned (stability). In the speci�c case of short-range
resonating-valence-bond liquids, the �uctuating Z2 gauge �eld is simply the
valence-bond background in which the spinons propagate.

This type of approach is very useful in shedding light on the low-energy
properties of spin liquids. It also allows a classi�cation of the di�erent possible
phases and the extraction of certain universal properties. Deciding whether
or not a given frustrated spin model has a spin-liquid ground state remains a
di�cult task, because the approaches discussed here are not easy to apply as
quantitatively accurate calculations for microscopic Hamiltonians. However,
the concepts we have reviewed, including gauge �uctuations, fractionaliza-
tion, and topological order, are crucial elements guiding the search for and
characterization of these new states of matter.
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